MRI也就是磁共振成像,英文全稱是:Magnetic Resonance Imaging。經常為人們所利用的原子核有: 1H、11B、13C、17O、19F、31P。在這項技術誕生之初曾被稱為核磁共振成像,到了20世紀80年代初,作為醫學新技術的NMR成像(NMR Imaging)一詞越來越為公眾所熟悉。隨著大磁體的安裝,有人開始擔心字母“N”可能會對磁共振成像的發展產生負面影響。另外,“nuclear”一詞還容易使醫院工作人員對磁共振室產生另一個核醫學科的聯想。因此,為了突出這一檢查技術不產生電離輻射的優點,同時與使用放射性元素的核醫學相區別,放射學家和設備制造商均同意把“核磁共振成像術”簡稱為“磁共振成像(MRI)”。
核磁共振成像原理:原子核帶有正電,許多元素的原子核,如1H、19FT和31P等進行自旋運動。通常情況下,原子核自旋軸的排列是無規律的,但將其置于外加磁場中時,核自旋空間取向從無序向有序過渡。這樣一來,自旋的核同時也以自旋軸和外加磁場的向量方向的夾角繞外加磁場向量旋進,這種旋進叫做拉莫爾旋進,就像旋轉的陀螺在地球的重力下的轉動。自旋系統的磁化矢量由零逐漸增長,當系統達到平衡時,磁化強度達到穩定值。如果此時核自旋系統受到外界作用,如一定頻率的射頻激發原子核即可引起共振效應。這樣,自旋核還要在射頻方向上旋進,這種疊加的旋進狀態叫做章動。在射頻脈沖停止后,自旋系統已激化的原子核,不能維持這種狀態,將回復到磁場中原來的排列狀態,同時釋放出微弱的能量,成為射電信號,把這許多信號檢出,并使之能進行空間分辨室,就得到運動中原子核分布圖像。原子核從激化的狀態回復到平衡排列狀態的過程叫弛豫過程。它所需的時間叫弛豫時間。弛豫時間有兩種即T1和T2,T1為自旋-點陣或縱向馳豫時間,T2為自旋-自旋或橫向弛豫時間。
磁共振最常用的核是氫原子核質子(1H),因為它的信號最強,在人體組織內也廣泛存在。影響磁共振影像因素包括:(a)質子的密度;(b)弛豫時間長短;(c)血液和腦脊液的流動;(d)順磁性物質(e)蛋白質。
磁共振影像灰階特點是,磁共振信號愈強,則亮度愈大,磁共振的信號弱,則亮度也小,從白色、灰色到黑色。
各種組織磁共振影像灰階特點如下:脂肪組織,松質骨呈白色;腦脊髓、骨髓呈白灰色;內臟、肌肉呈灰白色;液體,正常速度流血液呈黑色;骨皮質、氣體、含氣肺呈黑色。
核磁共振的另一特點是流動液體不產生信號稱為流動效應或流動空白效應。因此血管是灰白色管狀結構,而血液為無信號的黑色。這樣使血管很容易與軟組織分開。正常脊髓周圍有腦脊液包圍,腦脊液為黑色的,并有白色的硬膜為脂肪所襯托,使脊髓顯示為白色的強信號結構。
核磁共振(MRI)已應用于全身各系統的成像診斷。效果最佳的是顱腦,及其脊髓、心臟大血管、關節骨骼、軟組織及盆腔等。對心血管疾病不但可以觀察各腔室、大血管及瓣膜的解剖變化,而且可作心室分析,進行定性及半定量的診斷,可作多個切面圖,空間分辨率較高,顯示心臟及病變全貌,及其與周圍結構的關系,優于其他X線成像、二維超聲、核素及CT檢查。在對腦脊髓病變診斷時,可作冠狀、矢狀及橫斷面像。